A Granular Classifier By Means of Context-based Similarity Clustering
نویسندگان
چکیده
In this study, we propose a granular classifier (GC) with the aid of a context-based similarity clustering (CSC) method and applied it for network intrusion detection. The proposed CSC supporting the design of information granules is exploited here to determine the so-called contexts. Unlike the conventional similar clustering method, here the CSC built clusters by taking into consideration of both input data and output data. The design of granular classifier is realized based on the if-then rules, which consists two parts: namely premise part and conclusion part. The premise part is developed by using the CSC, while the conclusion part is realized with the aid of supported vector machines. In contrast to typical rule-based classifier, the underlying principle exploited here is to consider a robust classification with the adequate use of output data. In particular, rule-based classifiers or supported vector machines can be regarded as a special case of the proposed granular classifier. Numeric studies show the superiority of the proposed approach.
منابع مشابه
A Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach
In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...
متن کاملOn the use of Heronian means in a similarity classifier
This paper introduces new similarity classifiers using the Heronian mean, and the generalized Heronian mean operators. We examine the use of these operators at the aggregation step within the similarity classifier. The similarity classifier was earlier studied with other operators, in particular with an arithmetic mean, generalized mean, OWA operators, and many more. The two classifiers here ar...
متن کاملDeveloping new Adaptive Neuro-Fuzzy Inference System models to predict granular soil groutability
Three Neuro-Fuzzy Inference Systems (ANFIS) including Grid Partitioning (GP), Subtractive Clustering (SCM) and Fuzzy C-means clustering Methods (FCM) have been used to predict the groutability of granular soil samples with cement-based grouts. Laboratory data from related available in litterature was used for the tests. Several parameters were taken into account in the proposed models: water:ce...
متن کاملImproving Accuracy in Intrusion Detection Systems Using Classifier Ensemble and Clustering
Recently by developing the technology, the number of network-based servicesis increasing, and sensitive information of users is shared through the Internet.Accordingly, large-scale malicious attacks on computer networks could causesevere disruption to network services so cybersecurity turns to a major concern fornetworks. An intrusion detection system (IDS) could be cons...
متن کاملAn Empirical Comparison of Distance Measures for Multivariate Time Series Clustering
Multivariate time series (MTS) data are ubiquitous in science and daily life, and how to measure their similarity is a core part of MTS analyzing process. Many of the research efforts in this context have focused on proposing novel similarity measures for the underlying data. However, with the countless techniques to estimate similarity between MTS, this field suffers from a lack of comparative...
متن کامل